MATH 105 101 Practice Problems

1. Find the Maclaurin series of the following functions:

(a)
$$f(x) = \int_0^{x^2} \frac{1}{1+t} dt.$$

(b) $f(x) = \frac{1}{(1+2x)^2}.$

- 2. Let $f(x) = \int_x^2 e^{-t} dt$. Find an upper bound for the error of the approximation of $\int_3^5 f(x) dx$ using Simpson's Rule with n = 6. Do not write down the approximation *itself*.
- 3. Let $f(x) = \frac{3x+7}{x^2+3x-4}$.

(a) Use the method of partial fraction to decompose f(x) as a sum of simpler fractions.

- (b) Let $f(x) = \sum_{k=0}^{\infty} c_k x^k$ be the power series representation of f(x) at x = 0. Find the expression for c_k .
- 4. Find and classify all the critical points of the function:

$$F(x,y) = \int_0^{xy+x} h(t) \, dt,$$

where h(t) is a differentiable function on \mathbb{R} and h(t) > 0 for all t.

5. Determine if the following series converge:

(a)
$$\sum_{k=1}^{\infty} (\arctan(k))^{1/k}$$
.
(b) $\sum_{k=1}^{\infty} e^k e^{-e^k}$.
(c) $\sum_{k=1}^{\infty} \frac{k\sqrt[4]{k^5 + k} + 2k^2}{3k^3 - k + 1}$.
(d) $\sum_{k=2}^{\infty} \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k - 1}}\right)$.

6. Let $F(x,y) = \int_x^{xy} h(t) dt$, where h(t) is a continuous function on \mathbb{R} . Let h(0) = 3, find the gradient $\nabla F \mid_{(0,5)}$.

7. Use the method of Lagrange multipliers to find the maximum value of the function

$$f(x,y) = x + x^2 + 4y$$

on the circle $x^{2} + x + y^{2} + 2y = 1$.

8. Let
$$a_k = \frac{1}{k^2 + 7k + 12}$$
.

- (a) Use the method of partial fraction to decompose a_k as a sum of simpler fractions.
- (b) Find a formula for the *n*-th partial sum s_n of the series $\sum_{k=1}^{\infty} a_k$, where $s_n = \sum_{k=1}^{n} a_k$.

(c) Evaluate the series
$$\sum_{k=1}^{\infty} a_k$$
.

- 9. Find the total area of the region bounded by the curve $y = x^2 x 6$ and the x-axis between x = 0 and x = 5. Note that this is not the same as the net area of the region.
- 10. Find the value of k such that $f(x) = k \arcsin(x)$ is a probability density function for a continuous random variable on [0, 1].
- 11. Evaluate the following indefinite integrals:

(a)
$$\int \frac{x}{\sqrt{2x+3}} dx.$$

(b)
$$\int \frac{e^x}{\sqrt{9-e^{2x}}} dx.$$

12. Evaluate the following definite integrals:

(a)
$$\int_0^1 -\frac{1}{\sqrt{4-x^2}} dx.$$

(b) $\int_1^6 -\sqrt{25-(x-1)^2} dx.$
(c) $\int_0^{\ln(2)} e^{-x} f'(e^{-x}) dx$, given that $f(1) = 5$ and $f(0.5) = 6.$

13. Evaluate the following numerical series:

(a)
$$\sum_{k=1}^{\infty} \frac{1}{\pi^{k+1}k!}$$
, given that $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$.
(b) $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}\pi^{2k+1}}{6^{2k+1}(2k+1)!}$, given that $\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$.

(c)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{3^k(2k+1)}$$
, given that $\arctan(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2k+1}$ for $|x| < 1$.

14. Given that $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$, find the 42-th derivative $f^{(42)}(0)$ where $f(x) = e^{(x^3)}$.

15. Solve the following initial value problem:

$$\frac{dy}{dx} = xe^{x^2 - \ln(y^2)}, \qquad y(0) = 0.$$

You may leave the solution in its implicit form.